Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Pediatr Blood Cancer ; : e31006, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616361

RESUMO

BACKGROUND: Myeloid neoplasms account for 50% of cases of pediatric leukemias in infants. Approximately 25%-50% of patients with newborn leukemia have cutaneous extramedullary disease (EMD). In less than 10% of patients, aleukemic leukemia cutis or isolated extramedullary disease with cutaneous involvement (cEMD) occurs when skin lesions appear prior to bone marrow involvement and systemic symptoms. Interestingly, in acute myeloid leukemia with cutaneous EMD (AML-cEMD) and cEMD, spontaneous remissions have been reported. METHOD: This is a multicentric retrospective cohort study aiming to describe characteristics, treatment, and outcome of infants with either cEMD or presence of cutaneous disease with involvement of the bone marrow (AML-cEMD). This study included patients born between 1990 and 2018 from Italy, the Netherlands, Switzerland, and the United States, diagnosed between 0 and 6 months of life with cEMD or AML-cEMD. Descriptive statistics, Fisher's exact test, Kaplan-Meier method, and log rank test were applied. RESULTS: The cohort consisted of n = 50 patients, including 42 AML-cEMD and eight cEMD patients. The most common genetic mutation found was a KMT2A rearrangement (n = 26, 52%). Overall 5-year event-free survival (EFS) and overall survival (OS) were 66% [confidence interval (CI): 51-78] and 75% [CI: 60-85], respectively. In two patients, complete spontaneous remission occurred without any therapy. Central nervous system (CNS) involvement was found in 25% of cEMD patients. No difference in outcomes was observed between the AML-cEMD and cEMD groups, but none of the latter patients included in the study died. KMT2A rearrangements were not associated with poorer prognosis. CONCLUSION: In the largest cohort to date, our study describes the characteristics of infants with cutaneous involvement of myeloid neoplasms including cytomolecular findings and survival rates. Further prospective biologic and clinical studies of these infants with myeloid neoplasms will be required to individualize therapy for this rare patient population.

2.
Pediatr Res ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263451

RESUMO

BACKGROUND: Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth. METHODS: To evaluate the impact of PH on distant tumor growth, PH was performed in mice subcutaneously implanted with a HB patient-derived xenograft (PDX). The influence of PH on tumor growth at primary site was assessed by performing PH concomitantly to HB PDXs orthotopic implantation. RESULTS: Subcutaneously implanted HB PDX failed to show any influence of hepatectomy on tumor growth. Instead, intrahepatic tumor growth of one of the 4 HB PDXs implanted orthotopically was clearly enhanced. Cells derived from the hepatectomy-sensitive HB PDX exposed to hepatic growth factor (HGF) showed increased proliferation rate compared to cells derived from a hepatectomy-insensitive model, suggesting that the HGF/MET pathway could be one of the effectors of the crosstalk between liver regeneration and HB growth. CONCLUSION: These results suggest that hepatectomy can contribute to HB growth in some patients, further studies will be necessary to identify biomarkers predictive of patient risk of PH-induced HB recurrence. IMPACT: Key message: Cytokines and growth factors secreted following partial hepatectomy can contribute to intrahepatic tumor growth in some hepatoblastoma models. What does it add to the existing literature: It is the first article about the impact of liver regeneration induced by partial hepatectomy on hepatoblastoma local or distant tumoral growth in nude mice. What is the impact: It is important to identify the secreted factors that enhance tumor growth and to define biomarkers predictive of patient risk of partial hepatectomy-induced hepatoblastoma recurrence.

3.
Genes (Basel) ; 14(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003028

RESUMO

The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Masculino , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doadores não Relacionados , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Translocação Genética
4.
Cytometry A ; 103(12): 1004-1009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876342

RESUMO

In the development of novel immunotherapeutic approaches, the step of target identification is a challenging process, because it aims at identifying robust tumor-associated antigens (TAAs) specific for the pathological population and causing no off-target effects. Here we propose CD72 as a novel and robust TAA for pediatric acute leukemias. We provided an outline of CD72 expression assessed by flow cytometry on a variety of cancer cell lines and primary samples, including normal bone marrow (BM) samples and hematopoietic stem and progenitor cells. We analyzed CD 72 expression on a cohort of 495 pathological pediatric BM aspirates, including: 215 B-cell precursor acute lymphoblastic leukemias (BCP-ALL), 156 acute myeloid leukemias (AMLs), 88 T-lineage ALLs or lymphoblastic lymphomas with BM infiltration, 13 B-lineage lymphoblastic lymphomas with BM infiltration, 9 myelodysplastic syndromes with increased blasts (5%-9% blasts on BM: MDS-IB1) and 14 non-hematopoietic solid tumors infiltrating BM. Results showed that CD72 is highly expressed in almost all BCP-ALL and the majority of AML at diagnosis, including BCP-ALL cases characterized by CD19 loss. These findings support a potential role for advanced diagnostics and novel immunotherapy approaches, providing a pan-ALL and AML target.


Assuntos
Leucemia Mieloide Aguda , Leucemia , Linfoma , Síndromes Mielodisplásicas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Antígenos de Neoplasias , Imunofenotipagem , Citometria de Fluxo , Antígenos de Diferenciação de Linfócitos B , Antígenos CD/metabolismo
5.
Haematologica ; 108(1): 48-60, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899387

RESUMO

Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.


Assuntos
Leucemia Mieloide Aguda , Sarcoma de Ewing , Criança , Adulto , Humanos , Nucleofosmina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Transcriptoma , Prognóstico
6.
Blood Adv ; 7(8): 1513-1524, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36053787

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare clonal stem cell disorder that occurs in early childhood and is characterized by the hyperactivation of the RAS pathway in 95% of the patients. JMML is characterized by a hyperproliferation of granulocytes and monocytes, and little is known about the heterogeneous nature of leukemia-initiating cells, as well as of the cellular hierarchy of the JMML bone marrow. In this study, we report the generation and characterization of a novel patient-derived three-dimensional (3D) in vitro JMML model, called patient-derived JMML Atypical Organoid (pd-JAO), sustaining the long-term proliferation of JMML cells with stem cell features and patient-specific hallmarks. JMML cells brewed in a 3D model under different microenvironmental conditions acquired proliferative and survival advantages when placed under low oxygen tension. Transcriptomic and microscopic analyses revealed the activation of specific metabolic energy pathways and the inactivation of processes leading to cell death. Furthermore, we demonstrated the pd-JAO-derived cells' migratory, propagation, and self-renewal capacities. Our study contributes to the development of a robust JMML 3D in vitro model for studying and defining the impact of microenvironmental stimuli on JMML disease and the molecular mechanisms that regulate JMML initiating and propagating cells. Pd-JAO may become a promising model for compound tests focusing on new therapeutic interventions aimed at eradicating JMML progenitors and controlling JMML disease.


Assuntos
Leucemia Mielomonocítica Juvenil , Humanos , Pré-Escolar , Leucemia Mielomonocítica Juvenil/terapia , Medula Óssea , Granulócitos , Proliferação de Células
7.
Oncol Rep ; 48(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36321792

RESUMO

Novel therapeutic strategies are needed for paediatric patients affected by Acute Myeloid Leukaemia (AML), particularly for those at high-risk for relapse. MicroRNAs (miRs) have been extensively studied as biomarkers in cancer and haematological disorders, and their expression has been correlated to the presence of recurrent molecular abnormalities, expression of oncogenes, as well as to prognosis/clinical outcome. In the present study, expression signatures of different miRs related both to presence of myeloid/lymphoid or mixed-lineage leukaemia 1 and Fms like tyrosine kinase 3 internal tandem duplications rearrangements and to the clinical outcome of paediatric patients with AML were identified. Notably, miR-221-3p and miR-222-3p resulted as a possible relapse-risk related miR. Thus, miR-221-3p and miR-222-3p expression modulation was investigated by using a Bromodomain­containing protein 4 (BRD4) inhibitor (JQ1) and a natural compound that acts as histone acetyl transferase inhibitor (curcumin), alone or in association, in order to decrease acetylation of histone tails and potentiate the effect of BRD4 inhibition. JQ1 modulates miR-221-3p and miR-222-3p expression in AML with a synergic effect when associated with curcumin. Moreover, changes were observed in the expression of CDKN1B, a known target of miR-221-3p and miR-222-3p, increase in apoptosis and downregulation of miR-221-3p and miR-222-3p expression in CD34+ AML primary cells. Altogether, these findings suggested that several miRs expression signatures at diagnosis may be used for risk stratification and as relapse prediction biomarkers in paediatric AML outlining that epigenetic drugs, could represent a novel therapeutic strategy for high-risk paediatric patients with AML. For these epigenetic drugs, additional research for enhancing activity, bioavailability and safety is needed.


Assuntos
Curcumina , Leucemia Mieloide Aguda , MicroRNAs , Humanos , Criança , Proteínas Nucleares/metabolismo , Curcumina/farmacologia , Histonas , Fatores de Transcrição/metabolismo , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Apoptose , Proteínas de Ciclo Celular/metabolismo
8.
Biomedicines ; 10(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35884834

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a curative post-remission treatment in patients with acute myeloid leukemia (AML), but relapse after transplant is still a challenging event. In recent year, several studies have investigated the molecular minimal residual disease (qPCR-MRD) as a predictor of relapse, but the lack of standardized protocols, cut-offs, and timepoints, especially in the pediatric setting, has prevented its use in several settings, including before HSCT. Here, we propose the first collaborative retrospective I-BFM-AML study assessing qPCR-MRD values in pretransplant bone marrow samples of 112 patients with a diagnosis of AML harboring t(8;21)(q22; q22)RUNX1::RUNX1T1, or inv(16)(p13q22)CBFB::MYH11, or t(9;11)(p21;q23)KMT2A::MLLT3, or FLT3-ITD genetic markers. We calculated an ROC cut-off of 2.1 × 10-4 that revealed significantly increased OS (83.7% versus 57.1%) and EFS (80.2% versus 52.9%) for those patients with lower qPCR-MRD values. Then, we partitioned patients into three qPCR-MRD groups by combining two different thresholds, 2.1 × 10-4 and one lower cut-off of 1 × 10-2, and stratified patients into low-, intermediate-, and high-risk groups. We found that the 5-year OS (83.7%, 68.6%, and 39.2%, respectively) and relapse-free survival (89.2%, 73.9%, and 67.9%, respectively) were significantly different independent of the genetic lesion, conditioning regimen, donor, and stem cell source. These data support the PCR-based approach playing a clinical relevance in AML transplant management.

9.
Diagnostics (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35885553

RESUMO

Primary soft-tissue lymphoma (PSTL) is a rare extranodal non-Hodgkin lymphoma, characterized by a mass growing within soft-tissue, which is connective tissue, adipose tissue, and skeletal muscle. Here, we describe a case of biphenotypic lymphoblastic lymphoma arising from soft tissue of the popliteal fossa in an 11-year-old boy. A pediatric review about PSTL revealed that anaplastic large cell lymphoma is the most common histological type and a biphenotypic lymphoblastic lymphoma has not yet been reported in childhood. Lymphoma should always be considered in patients presenting with a soft-tissue mass, and a comprehensive immunohistochemical evaluation, including B-cell, T-cell, and myeloid markers, is needed to make a correct diagnosis and establish the most suitable treatment.

10.
iScience ; 24(11): 103350, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34816103

RESUMO

Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA CDK6-AS1 able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. CDK6-AS1 silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued. This latter phenomenon derived from RUNX1 transcriptional control, responsible for the stemness of hematopoietic precursors and for the block of differentiation in AML. By CDK6-AS1 silencing in vitro, AML mitochondrial mass decreased with augmented pharmacological sensitivity to mitochondria-targeting drugs. In vivo, the combination of tigecycline and cytarabine reduced leukemia progression in the AML-PDX model with high CDK6-AS1 levels, supporting the concept of a mitochondrial vulnerability. Together, these findings uncover CDK6-AS1 as crucial in myeloid differentiation and mitochondrial mass regulation.

11.
Blood Cancer Discov ; 2(6): 586-599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778799

RESUMO

Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell-like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification. SIGNIFICANCE: Immunophenotype and somatic mutations play a significant role in treatment approach and risk stratification of acute leukemia. We conducted an integrated genomic analysis of pediatric myeloid malignancies and found that a combination of genetic and transcriptional readouts was superior to immunophenotype and genomic mutations in identifying biological subtypes and predicting outcomes. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Leucemia Mieloide Aguda , Criança , Perfilação da Expressão Gênica , Genômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação/genética , Prognóstico
12.
J Cell Mol Med ; 25(18): 9060-9065, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402163

RESUMO

BCL2-associated athanogene-1 (BAG1) is a multi-functional protein that is found deregulated in several solid cancers and in paediatric acute myeloid leukaemia. The investigation of BAG1 isoforms expression and intracellular localization in B-cell acute lymphoblastic leukaemia (B-ALL) patient-derived specimens revealed that BAG1 levels decrease during disease remission, compared to diagnosis, but drastically increase at relapse. In particular, at diagnosis both BAG1-L and BAG1-M isoforms are mainly nuclear, while during remission the localization pattern changes, having BAG1-M almost exclusively in the cytosol indicating its potential cytoprotective role in B-ALL. In addition, knockdown of BAG1/BAG3 induces cell apoptosis and G1-phase cell cycle arrest and, more intriguingly, shapes cell response to chemotherapy. BAG1-depleted cells show an increased sensitivity to the common chemotherapeutic agents, dexamethasone or daunorubicin, and to the BCL2 inhibitor ABT-737. Moreover, the BAG1 inhibitor Thio-2 induces a cytotoxic effect on RS4;11 cells both in vitro and in a zebrafish xenograft model and strongly synergizes with pan-BCL inhibitors. Collectively, these data sustain BAG1 deregulation as a critical event in assuring survival advantage to B-ALL cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fatores de Transcrição/metabolismo , Antineoplásicos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Cultura Primária de Células , Células Tumorais Cultivadas
13.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298672

RESUMO

Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, predominantly located in the nucleolus, that regulates a multiplicity of different biological processes. NPM1 localization in the cell is finely tuned by specific signal motifs, with two tryptophan residues (Trp) being essential for the nucleolar localization. In acute myeloid leukemia (AML), several NPM1 mutations have been reported, all resulting in cytoplasmic delocalization, but the putative biological and clinical significance of different variants are still debated. We explored HOXA and HOXB gene expression profile in AML patients and found a differential expression between NPM1 mutations inducing the loss of two (A-like) Trp residues and those determining the loss of one Trp residue (non-A-like). We thus expressed NPM1 A-like- or non-A-like-mutated vectors in AML cell lines finding that NPM1 partially remained in the nucleolus in the non-A-like NPM1-mutated cells. As a result, only in A-like-mutated cells we detected HOXA5, HOXA10, and HOXB5 hyper-expression and p14ARF/p21/p53 pathway deregulation, leading to reduced sensitivity to the treatment with either chemotherapy or Venetoclax, as compared to non-A-like cells. Overall, we identified that the NPM1 mutational status mediates crucial biological characteristics of AML cells, providing the basis for further sub-classification and, potentially, management of this subgroup of patients.

14.
Blood ; 138(7): 557-570, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34010415

RESUMO

Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction, and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but >30% of patients still relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the role of mesenchymal stromal cells (MSCs) in the leukemic niche to define its contribution to the mechanism of leukemia drug escape. We generated a humanized 3-dimensional (3D) niche with AML cells and MSCs derived from either patients (AML-MSCs) or healthy donors. We observed that AML cells establish physical connections with MSCs, mediating a reprogrammed transcriptome inducing aberrant cell proliferation and differentiation and severely compromising their immunomodulatory capability. We confirmed that AML cells modulate h-MSCs transcriptional profile promoting functions similar to the AML-MSCs when cocultured in vitro, thus facilitating leukemia progression. Conversely, MSCs derived from BM of patients at time of disease remission showed recovered healthy features at transcriptional and functional levels, including the secretome. We proved that AML blasts alter MSCs activities in the BM niche, favoring disease development and progression. We discovered that a novel AML-MSC selective CaV1.2 channel blocker drug, lercanidipine, is able to impair leukemia progression in 3D both in vitro and when implanted in vivo if used in combination with chemotherapy, supporting the hypothesis that synergistic effects can be obtained by dual targeting approaches.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Canais de Cálcio Tipo L/metabolismo , Di-Hidropiridinas/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
15.
Cytometry A ; 99(8): 844-850, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811445

RESUMO

The presence of CBFA2T3-GLIS2 fusion gene has been identified in childhood Acute Myeloid Leukemia (AML). In view of the genomic studies indicating a distinct gene expression profile, we evaluated the role of immunophenotyping in characterizing a rare subtype of AML-CBFA2T3-GLIS2 rearranged. Immunophenotypic data were obtained by studying a cohort of 20 pediatric CBFA2T3-GLIS2-AML and 77 AML patients not carrying the fusion transcript. Enrolled cases were included in the Associazione Italiana di Ematologia Oncologia Pediatrica (AIEOP) AML trials and immunophenotypes were compared using different statistical approaches. By multiple computational procedures, we identified two main core antigens responsible for the identification of the CBFA2T3-GLIS2-AML. CD56 showed the highest performance in single marker evaluation (AUC = 0.89) and granted the most accurate prediction when used in combination with HLA-DR (AUC = 0.97) displaying a 93% sensitivity and 99% specificity. We also observed a weak-to-negative CD45 expression, being exceptional in AML. We here provide evidence that the combination of HLA-DR negativity and intense bright CD56 expression detects a rare and aggressive pediatric AML genetic lesion improving the diagnosis performance.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Criança , Antígenos HLA-DR , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Repressoras , Transcriptoma
16.
Front Pharmacol ; 12: 820191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153769

RESUMO

In pediatric acute myeloid leukemia (AML), fusions involving lysine methyltransferase 2A (KMT2A) are considered hallmarks of aggressive AML, for whom the development of targeted specific therapeutic agents to ameliorate classic chemotherapy and obtain a complete eradication of disease is urgent. In this study, we investigated the antiapoptotic proteins in a cohort of 66 pediatric AML patients, finding that 75% of the KMT2A-r are distributed in Q3 + Q4 quartiles of BCL-2 expression, and KMT2A-r have statistically significant high levels of BCL-2, phospho-BCL-2 S70, and MCL-1, indicating a high anti-apoptotic pathway activation. In an attempt to target it, we tested novel drug combinations of venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, in KMT2A-MLLT3, for being the most recurrent, and KMT2A-AFDN, for mediating the worst prognosis, rearranged AML cell lines. Our screening revealed that both the bromodomain and extra-terminal domain (BET) inhibitor, I-BET151, and kinase inhibitor, sunitinib, decreased the BCL-2 family protein expression and significantly synergized with venetoclax, enhancing KMT2A-r AML cell line death. Blasts t (6; 11) KMT2A-AFDN rearranged, both from cell lines and primary samples, were shown to be significantly highly responsive to the combination of venetoclax and thioridazine, with the synergy being induced by a dramatic increase of mitochondrial depolarization that triggered blast apoptosis. Finally, the efficacy of novel combined drug treatments was confirmed in KMT2A-r AML cell lines or ex vivo primary KMT2A-r AML samples cultured in a three-dimensional system which mimics the bone marrow niche. Overall, this study identified that, by high-throughput screening, the most KMT2A-selective drugs converged in different but all mitochondrial apoptotic network activation, supporting the use of venetoclax in this AML setting. The novel drug combinations here unveiled provide a rationale for evaluating these combinations in preclinical studies to accelerate the introduction of targeted therapies for the life-threatening KMT2A-AML subgroup of pediatric AML.

18.
J Hematol Oncol ; 13(1): 135, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046098

RESUMO

Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity. Ten selected DEGs were then validated, confirming the sequencing data. These DEGs will potentially represent new molecular biomarkers and therapeutic targets for PMDS.


Assuntos
Síndromes Mielodisplásicas/genética , Transcriptoma , Criança , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA
19.
Blood Adv ; 4(18): 4417-4429, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32931582

RESUMO

In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases, with severe late effects and a still high risk of disease recurrence as the main drawbacks. The identification of targeted, more effective, safer drugs is thus desirable. We performed a high-throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ), a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement, which mediates a dramatically poor (below 20%) survival rate. TDZ induced cell death and irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we explored its mechanism of action and found a profound cytoskeletal remodeling of blast cells that led to Ca2+ influx, triggering apoptosis through mitochondrial depolarization, confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug's safety by developing novel TDZ analogues that exerted the same effect on leukemia reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be corroborated in further clinical trials.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Cálcio , Morte Celular , Criança , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Tioridazina , Translocação Genética
20.
Oncotarget ; 11(25): 2387-2403, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32637030

RESUMO

The 90 kDa Ribosomal S6 Kinase (RSK) drives cell proliferation and survival in cancers, although its oncogenic mechanism has not been well characterized. Phosphorylated level of RSK (T573) was increased in acute myeloid leukemia (AML) patients and associated with poor survival. To examine the role of RSK in AML, we analyzed apoptosis and the cell cycle profile following treatment with BI-D1870, a potent inhibitor of RSK. BI-D1870 treatment increased the G2/M population and induced apoptosis in AML cell lines and patient AML cells. Characterization of mitotic phases showed that the metaphase/anaphase transition was significantly inhibited by BI-D1870. BI-D1870 treatment impeded the association of activator CDC20 with APC/C, but increased binding of inhibitor MAD2 to CDC20, preventing mitotic exit. Moreover, the inactivation of spindle assembly checkpoint or MAD2 knockdown released cells from BI-D1870-induced metaphase arrest. Therefore, we investigated whether BI-D1870 potentiates the anti-leukemic activity of vincristine by targeting mitotic exit. Combination treatment of BI-D1870 and vincristine synergistically increased mitotic arrest and apoptosis in acute leukemia cells. These data show that BI-D1870 induces apoptosis of AML cells alone and in combination with vincristine through blocking mitotic exit, providing a novel approach to overcoming vincristine resistance in AML cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...